成熟丰满熟妇高潮XXXXX,人妻无码AV中文系列久久兔费 ,国产精品一国产精品,国精品午夜福利视频不卡麻豆

您好,歡迎來到九壹網(wǎng)。
搜索
您的當(dāng)前位置:首頁2022高一數(shù)學(xué)知識點總結(jié)最新5篇

2022高一數(shù)學(xué)知識點總結(jié)最新5篇

來源:九壹網(wǎng)
?

2022高一數(shù)學(xué)知識點總結(jié)最新5篇

高一數(shù)學(xué)雖然學(xué)起來不容易,但是總結(jié)好每一個重要的數(shù)學(xué)知識點,有利于你在考試中的發(fā)揮。那么,2022高一數(shù)學(xué)知識點總結(jié)怎么寫?以下是精心收集整理的2022高一數(shù)學(xué)知識點總結(jié),下面就和大家分享,來欣賞一下吧。 2022高一數(shù)學(xué)知識點總結(jié)1 等差數(shù)列公式

等差數(shù)列的通項公式為:an=a1+(n-1)d 或an=am+(n-m)d

前n項和公式為:sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2 若m+n=2p則:am+an=2ap 以上n均為正整數(shù) 文字翻譯

第n項的值=首項+(項數(shù)-1)_公差 前n項的和=(首項+末項)_項數(shù)/2 公差=后項-前項

高中數(shù)學(xué)數(shù)列知識點總結(jié):等比數(shù)列公式 等比數(shù)列求和公式

(1) 等比數(shù)列:a (n+1)/an=q (n∈n)。

(2) 通項公式:an=a1×q^(n-1); 推廣式:an=am×q^(n-m); (3) 求和公式:sn=n×a1 (q=1) sn=a1(1-q^n)/(1-q)

1 / 9

=(a1-an×q)/(1-q) (q≠1) (q為公比,n為項數(shù)) (4)性質(zhì):

①若 m、n、p、q∈n,且m+n=p+q,則am×an=ap×aq; ②在等比數(shù)列中,依次每 k項之和仍成等比數(shù)列. ③若m、n、q∈n,且m+n=2q,則am×an=aq^2 (5)g是a、b的等比中項g^2=ab(g ≠ 0).

(6)在等比數(shù)列中,首項a1與公比q都不為零. 注意:上述公式中an表示等比數(shù)列的第n項。

等比數(shù)列求和公式推導(dǎo): sn=a1+a2+a3+...+an(公比為q) q_sn=a1_q+a2_q+a3_q+...+an_q

=a2+a3+a4+...+a(n+1)

sn-q_sn=a1-a(n+1) (1-q)sn=a1-a1_q^n sn=(a1-a1_q^n)/(1-q) sn=(a1-an_q)/(1-q)

sn=k_(1-q^n)~y=k_(1-a^x)。 2022高一數(shù)學(xué)知識點總結(jié)2 (1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α180° (2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時,。當(dāng)時,;當(dāng)時,不存在。

2 / 9

sn=a1(1-q^n)/(1-q)

②過兩點的直線的斜率公式: 注意下面四點:

(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關(guān);

(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。

2022高一數(shù)學(xué)知識點總結(jié)3 自變量x和因變量y有如下關(guān)系: y=kx+b

則此時稱y是x的一次函數(shù)。

特別地,當(dāng)b=0時,y是x的正比例函數(shù)。 即:y=kx(k為常數(shù),k≠0) 二、一次函數(shù)的性質(zhì):

1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k 即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù)) 2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。 三、一次函數(shù)的圖像及性質(zhì): 1.作法與圖形:通過如下3個步驟 (1)列表;

3 / 9

(2)描點;

(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。 3.k,b與函數(shù)圖像所在象限:

當(dāng)k0時,直線必通過一、三象限,y隨x的增大而增大; 當(dāng)k0時,直線必通過二、四象限,y隨x的增大而減小。 當(dāng)b0時,直線必通過一、二象限; 當(dāng)b=0時,直線通過原點

當(dāng)b0時,直線必通過三、四象限。

特別地,當(dāng)b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

這時,當(dāng)k0時,直線只通過一、三象限;當(dāng)k0時,直線只通過二、四象限。

2022高一數(shù)學(xué)知識點總結(jié)4 1.集合的有關(guān)概念。

1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

注意:①集合與集合的元素是兩個不同的概念,教科書

4 / 9

中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

②集合中的元素具有確定性(a?a和a?a,二者必居其一)、互異性(若a?a,b?a,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

2)集合的表示方法:常用的有列舉法、描述法和圖文法 3)集合的分類:有限集,無限集,空集。 4)常用數(shù)集:n,z,q,r,n_

2.子集、交集、并集、補(bǔ)集、空集、全集等概念。 1)子集:若對x∈a都有x∈b,則a b(或a b);

2)真子集:a b且存在x0∈b但x0 a;記為a b(或 ,且 ) 3)交集:a∩b={x| x∈a且x∈b} 4)并集:a∪b={x| x∈a或x∈b} 5)補(bǔ)集:cua={x| x a但x∈u} 注意:①? a,若a≠?,則? a ; ②若 , ,則 ; ③若 且 ,則a=b(等集)

3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1) 與 、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。

5 / 9

4.有關(guān)子集的幾個等價關(guān)系

①a∩b=a a b;②a∪b=b a b;③a b c ua c ub; ④a∩cub = 空集 cua b;⑤cua∪b=i a b。 5.交、并集運(yùn)算的性質(zhì)

①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;

③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;

6.有限子集的個數(shù):設(shè)集合a的元素個數(shù)是n,則a有2n個子集,2n-1個非空子集,2n-2個非空真子集。 2022高一數(shù)學(xué)知識點總結(jié)5 1、柱、錐、臺、球的結(jié)構(gòu)特征 (1)棱柱:

定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

6 / 9

(2)棱錐

定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。 (3)棱臺:

定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等

表示:用各頂點字母,如五棱臺

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點 (4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。 (5)圓錐:

7 / 9

定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。 (6)圓臺:

定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。 (7)球體:

定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物

8 / 9

體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法 斜二測畫法特點:

①原來與x軸平行的線段仍然與x平行且長度不變; ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

9 / 9

因篇幅問題不能全部顯示,請點此查看更多更全內(nèi)容

Copyright ? 2019- 91gzw.com 版權(quán)所有 湘ICP備2023023988號-2

違法及侵權(quán)請聯(lián)系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市萬商天勤律師事務(wù)所王興未律師提供法律服務(wù)